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Mesh Generation Using Vector-Fields
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A method for generating structured meshes from vector fields is
described. The method is based on a weighted variational principle
that minimizes a least-squares fit to the inverse Jacobian matrix.
The weight is constructed from the vector fields by requiring local
alignment of the mesh with the fields and by prescribing local length
scales. The resulting grid generator is a weighted form of the Laplace
grid generation equations. The method is demonstrated in 2D using
a subsurface flow-field derived from hydrologic simulations. e 1995
Academic Press, Inc.

1. INTRODUCTION

The idea of solving Laplace’s equations as a Dirichlet prob-
lem has enjoyed widespread acceptance as a means of generat-
ing unfolded boundary-fitted meshes on arbitrary domains (the
idea goes back at least as far as the paper [18]). In practice,
these equations are little used due to the need to better adapt
the mesh in particular portions of the domain to the shape of
the domain or to features of the solution to the hosted physical
equations. To meet this need a wide range of grid generation
methods have been proposed.' Elliptic methods based on ad
hoc weightings of Laplace’s equations have been proposed to
adapt the mesh to the domain geometry [16, 17] or to permit
solution adaptivity {1, 10, 8], Some approaches abandon elliptic
grid generation methods altogether in order to gain speed and
precise mesh control [5, 14].

Variational generators control meshes through weighted
combinations of functionals for smoothness, area, and orthogo-
nality [2, 7, 15]. Although effective in some instances, these
methods may lack convexity in the variational principle (partic-
ularly if insufficient attention is paid to the relative weightings
between principles). Weighting also creates scaling problems
when weighting dimensionally incompatible principles. None-
the-less, variational methods remain attractive in that weighted
forms seem less likely to produce ad hoc generators than the
other approaches.

Nearly all of the methods mentioned so far attempt to control

! By and large these methods have proved effective in controlling the mesh;
hewever, the pracess generally lacks automation. The lack of automation is a
significant limitation of current algorithms, The present paper does not purport
to address this issue.

the elements of the metric tensor (e.g., by controlling cell-
lengths or orthogonality [12]). Surprisingly little attention has
been paid to using the vector fields associated with the solution
to the hosted equations as a means of assisting in the mesh
generation step. Alignment of the computational grid with the
vector-field associated with flow streamlines has long been
known to be an effective, if little-used, means of improving
the accuracy of a calculation [4, 13]. It is clear that such a
capability would also permit generation of boundary-fitted coor-
dinates on problems in which vser-specified vector-fields are
derived from fluxes, solution gradients, vorticity vectors, or
even the demain boundary.

Giannakopoulos and Engel proposed a variational principle
that minimizes the cross-product of the mesh tangents with the
vector-field in order to provide a mesh alignment capability
[6]. The present author has observed that the matrices involved
in the variational principle of Giannakopoulos and Engle are
singular which suggests that the corresponding grid generation
equations are, at best, degenerate elliptic [9, p. 224]. If true, non-
smooth grids may be expected. This expectation is supported by
the subsequent effort of Brackbill to improve the regularity of
the Giannakopoulos and Engle functional [3].

The present method (presently referred to as the vector-field
adaptive or VFA method) also uses the idea of alignment with
given vector fields, but does so indirectly via control of the
inverse Jacobian of the transformation. The method is based
on a variational principle which is a weighted form of Brackbill
and Saltzman’s ‘‘smoothness™ principle. Consequently, the
grid generation equations are a weighted form of the Winslow
equations and preserve ellipticity. The method has the attraction
of being easily incorporated as a modification to existing elliptic
mesh generation codes.

It is desirable to minimize the number and complexity of
the control functions/arbitrary parameters used in any grid gen-
erator. The experience of those working in the area suggests
that the use of arbitrary parameters in grid generation may be
unavoidable due to the complexity of the geometries involved
and the requirement of adaptivity. On the other hand, if at least
the control functions can be rigorously derived as part of the
theoretical development of the grid generator, then the arbitrary
parameters can likely be used with more confidence. The main
purpose of the present method is to show that previous weighted
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forms of the Winslow generator may be replaced by a less ad
hoc generator in which the weights have a clear interpretation
as the elements of the inverse Jacobian matrix of the mapping.
In the bargain one gets a general alignment capability, provided
one has access to or can construct at least one vector-field on
the domain.

2. THE VECTOR-FIELD ADAPTIVE METHOD

In practice constructing vector-fields on an arbitrary domain
may be a difficult, if not formidable, task. The most natural
application of this method would be in the case of r-type adap-
tive mesh generation for parabolic problems. In this case, an
initial mesh would be used to start the calculation. As the
solution evolves in time the flux-field may be used as one of
the vector fields. The other vectors may then be constructed
from the first by taking orthogonal complements (a trivial task
in two dimensions), In this section it is assumed that the three
vector-fields from which the weights are to be constructed are
known. The method is presented for the three-dimensional case,
with the restriction to two dimensions following naturally.

2.1. The 3D Vector-Field

Let a simply-connected domain {3 C R? be given. On this
domain three vector-fields V (x), Vy(x}, and V.{x) with compo-
nents V¥, i, k = 1, 2, 3 are given. Since non-folded meshes are
wanted, it is assumed that the vector-field triplet is oriented
such that V- (V, X V;)} > 0 on {). In general, the boundary
of {) need not be aligned with one of the vector-fields, although
this would make alignment of the interior grid much easier
to achieve.

Define the unit vectors U; = V,/ }Vfl and the matrix AU with
elements WU;, = {/}. The determinant g of U is positive.

Let U = {(& m, O|0 < & m, ¢ < 1} be the logical space.
The mapping x(£, n, {) from logical to physical space is deter-
mined by minimizing the weighted variational principle to be
described shortly. The weight is constructed by requiring the
tangents to the mapping to be aligned with the vector-fields,”
ie., xgz = £, U; with the £, being positive scale factors. This
requirement can be expressed as a condition on the Jacobian
matrix,

F =L 8y

where &£ = diag(£,, €1, €;5). Let A = £,£,¢; be the determinant
of &. From (1) the cell volume is V2 = uA. For brevity, let
T(x) = UL be the weight matrix.

To develop a variational principle it is best io state the
alignment condition in terms of the contra-variant tangents.

*This, of course, assumes that the designer of the mesh knows & priori
which of the three tangents can be best aligned with U,, which with U,, and
which with Us. In complicated geometries, it may be necessary to change the
correspondance in different parts of the domain.
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This is because I is a physical-space weight function and the
Euler—Lagrange equations are easier to derive in terms of a
contra-variant-based principle when a physical space weight
is nsed.

Inverting (1) gives $7' = &, where ¥ = T~'. The contra-
variant variational principle is to be minimized over the set of
admissible functions satisfying the boundary data,

M9.£ V0,90 = | Gardydz, )

where
G=|9"'"-9Rr (3)

The principle is thus a least-squares fit of the inverse Jacobian
matrix to the alignment condition (1). The principle is a
weighted generalization of the *‘smoothness’” variational prin-
ciple [2].

The second-variation of the functional can be expressed in
terms of the 4 X 4 Hessian matrix ¥ (see [9, p. 176]). For the
G in (3), the Hessian matrix is simply # = diag(l, 1, [,
1). The functiona! therefore satisfies the necessary condition
for convexity.

The Euler-Lagrange eguation is of primary interest since it
gives the grid generation equations:

div($™ — F) = 0. @)

This clearly has the solution $~! = &, boundary conditions
permitting. Thus the alignment condition (1) is potentially a
solution to the grid generation equations.

In two-dimensions, Eq. (4) is recognized as the pair of Pois-

son equations,

a5y 48y,
o - — 4+
V=gt (5)
88y | 5y
Ip= — 4 —= 6
Vin ax oy 6

where S;; are the elements of &,
Inverting (4) with & = 0 results in the well-known equations
9.x = 0, where

QX = guXy — 281Xe T 8nXay (7
A six-line derivation of these equation is given in {9, p. 154];
the derivation may be generalized to the case F # 0 to get the
weighted inverted equations:

9,x = — Vg IVHIE, (8)

with ¢ = Vg §7.
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Explicitly, the equations in two dimensions are a weighted
form of Winslow’s grid generation equations:

~Vg §W (9)

grXg — 28uXp + BuXgy =

with

W {(Su)gyn - (S.z)gxn — (S1)gye + (Su),,xg} o)
(52)eyn — Sndexy, — (Sadaye + (Suduke

That $' = & is a solution to (4) is clear. It is perhaps not
as clear that it is also a solution to the inverted equations (8),
but this may be verified using the identity

2% = -Vg V.9 1% an
(the latter is easily derived using the methods in [9, pp. 143—
154]). As a consequence, any smooth mesh on £} can be pro-
duced by this grid generator by using the proper boundary
conditions and by using a weight ¥ constructed by computing
the Jacobian matrix of the given mesh and inverting it.® It
should be clear from this discussion that it would be easy to
construct a simple example in which vector-fields derived from
a conformal map would generate a mesh that exactly satisfied
the alignment condition (1). It is more interesting to examine
the performance of the method on a general problem. Before
doing so, it is necessary to consider the as-yet undetermined
elements of the matrix &.

2.2, The Scale Factors as Control Functions

Since (1) implies that £, = \/;;_,-,-, the scale factors control
the lengths of the sides of the mesh cells. These lengths are
almost completely arbitrary, being only weakly constrained by
the requirement that determinant of &£ be related to the volume
p of the domain as

p= [ prdednar. (12)

In practice, however, the scale factors need to be selected
carefully so that cell sizes are not excessively large or small.
Each ¢; may vary spatially, but they should be roughty of the
same order of magnitude as the length of the domain £} in the
given direction.

One approach to constructing the scale factors begins by
defining average lengths in each direction:

L= | Vaidednar (13)

3 The guestion of how to perform the various discretizations involved in
order that the constructed & exactly recovers the original mesh is interesting,
but it is tangential to the objectives of this paper.
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In practice, only rough estimates of these average lengths need
be made, so the integral given above can be either estimatied
or computed with low accuracy.

Define the ratio r; = |V,»|/ ]V,l, where the average velocity is

o
W =;JQ|V,-[dxdydz. (14)

Let f;| R* — R* be a positive real-valued function of r; such
that f; = 0, f; = f(0) < o2, and f;(1) = f. Let{, be the average
value of f; over the logical domain:

7= [ ) deanac. (1s)

The quantities}"f and W,I may be computed with low accuracy.
The following form for the scale factors was selected:

€ =L; il‘ (16)
i
For r; > 1 this construction gives smaller than average lengths .
while r; < 1 gives larger than average lengths. In general it is
difficult to satisfy the requirement {13), but approximate equal-
ity is all that is needed. For u approximately equal to one, this

construction can be shown to roughly satisfy (12).

Arbitrariness in the method is thus mainly in the selection
of the functional form of the f;. The numerical examples to
follow suggest that these control functions can be simple func-
tions with few parameters.

3. NUMERICAL RESULTS

The first example is provided by the flow-field V in Fig. 1
which was computed using the SECO2D groundwater flow
code with a uniform mesh [11]. The white areas represent near-
stagnation regions in the flow. Note that the boundaries of the
domain do not coinctde with streamiines, 30 the method cannot
hope to achieve perfect alignment with this field. Nevertheless,
there is a general tendency for the streamlines to be vertical,
meandering from the top to the bottom boundary. This suggests
that one assign the vector fields as V; = ~Vand V, = V!
so that the tangents x, and x,, are aligned with V! and —V,
respectively. The matrix 9 is then completely defined. The
scale factors £; must also be defined. The simplest possibility
18 to set the scale factors to the lengths of the domain (£, =
Ly, and £, = Ly). This case adapts the mesh to the directions
implied by the vector field and specifies orthogonality and
uniform cell lengths.

A 40 X 46 mesh was computed using the weight & con-
structed from this flow-field and the grid generator (8). Discrete
velocity data was computed by SECO2D on a 46 X 53 uniform
grid; velocities for the weight matrix & were obtained from this
data using a bilinear interpolation scheme. The initial boundary
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FIG. 1. SECO2D flow-field.

parameterization consists of a stretch along the top and bottom
boundaries to roughly match locations where the velocities
are large.

The result is given in Fig. 2; it is seen that the mesh has
deviated only a little from the initial stretched tensor product
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FIG. 2. Grid adapted to SECO2D flow-field: Uniform length control.
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mesh. The improvement in alignment is rather poor (the root-
mean-square deviation from the desired alignment direction is
21.2°, compared to 22.4° for the initial tensor product mesh).
The problem is not the grid generation algorithm, but the bound-
ary—alignment cannot be much improved because the flow is
not well aligned with the boundary near the top and bottom
portions of the main flow.

To further adapt the mesh to the flow-field it makes sense
to require that the horizontal cell-spacing be small when the
magnitude of the flow is large. The function

Filry = fiexp a(l — 1)), an
with o a positive parameter, qualitatively produces this behav-
ior. Note that both the f; satisfy the constraints required in the
previous section (provided « is approximately one-half). This
weighting and vector field give

V| = 2.236 m/s (18)
V= 10.66 m/s (19)
fi=1.02. (20)

Figure 3 gives the resulting mesh (with & = 0.4). In general,
the grid echoes the properties of the flow-field: relatively large
cells in the three stagnation zones (upper and lower right, center)
and skinny cells in the main flow-path. The mesh is smooth
and the cells not badly skewed. Because the cell sizes are now
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FIG. 3. (rid adapted to SECO2D flow-field: Non-uniform length control.
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FIG. 4. Grid adapted to SECO2D flow-field: Non-orthogonal vector field.

adapted to the magnitude of the velocity, the mesh is certainly
better adapted to the flow-field than the uniform cartesian mesh
with which the flow-field was originally computed. Grid lines
are somewhat better aligned with the vector-field, particularly
in the middle right portion of the domain (now the reot-mean-
square deviation for the flow direction is 19.1%). Due to the
constraints of the boundary data, the mesh is unable to com-
pletely align with the flow-field. Alignment can be increased
somewhat by increasing the parameter «, but at the price of
overly large cells appearing in the stagnation region at the upper
right. For large enough values of o the method will produce a
folded mesh (this behavior is common to all forms of the
inhomogeneous Winslow equations). The functional form of the
control function is apparently of little importance. For example,

1
n=g

21
= 21
i { 1/Vr,, otherwise, @D

gives a mesh similar to that in Fig. 3.

The fact that this method can accommodate non-orthogonal
vecior-field pairs is illustrated next. It seems reasonable to
expect that alighment would be more achievable if one relaxed
the requirement of orthogonality. With this goal in mind, re-
define V, by the parameter weighted form

Vi=( - @Vt + w0, (22)

P. KNUPP

The idea is that the tangent x, will still try to align with ¥V, =
—V, but that the tangent x, may now align with the unit vector
(1, 0) to match the boundary data better (the value g = 1 gives
this case while u = 0 gives the original case). Unfortunately,
no solution was obtained for i = 1 because some of the node
points moved outside the domain during the initial portion of
the iteration. The iteration is forced to halt in this case because
there is no velocity data available outside the domain. It is not
clear whether or not the iteration would have converged had
such data been available. A solution was obtained for w = 0.5
(Fig. 4). The plotted result is almost indistinguishable from that
in Fig. 3, but at least it shows that it is possible to use non-
orthogonal vector-field pairs. The root-mean-square angle devi-
ation corresponding to Fig. 4 is 18.5°—a slight improvement
on Fig. 3.

Alignment can be improved considerably by changing the
boundary parameierization. Figure 5 shows a case in which the
boundary parameterization (fixed throughout the calculation)
was modified so that the corners of the logical domain map to
the points shown in physical space. Alignment with the flow-
fields is improved compared to the result in Fig. 4 (in Fig. 5
the root-mean-square angle deviation is 14.8%). Although the .
cells near the corner of the domain in Fig. 5 are probably not
acceptable for calculation of the flow-field, the robustness of
the method is demonstrated. The example suggests that when
domain boundaries align reasonably well with the flow-field
the interior alignment may be fairly good. For comparison, the
grid generated by the Laplace equations (no weights) for this
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FIG. 5. Adaption with alternate boundary parameterization.
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domain is shown in Fig. 6. The Laplace grid seems not nearly
as well adapted to the flow even though the root-mean-square
angle deviation is 15.9°.

Figure 7 shows the method applied to a miscible fluid flow
problem. The mesh has little trouble adapting to the flow-field
direction in this case because the flow is much better aligned
with the boundary of the domain.

,r;H‘J]mer\Hn“H

FIG. 7. Grid adapted to miscible displacement flow-field.
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4. SUMMARY

A variational theory for a weighted elliptic grid generator
that controls the inverse Jacobian of the mapping was presented.
The weights are constructed from sets of vector-fields in such
a manner that mesh tangents align with the vector-fields in a
least-squares sense. Arbitrary scale factors control cell lengths.
The method was demonstrated on two flow-fields. Although
more tests are needed to definitively establish the strengths and
weaknesses of the method, these preliminary results suggest
that adapting meshes to the given vector-fields is possible. The
method will be particularly effective when the boundaries of
the domain coincide with the vector-fields in some way. One
drawback of the present method is the arbitrariness of the scale
factors. It is hoped that this work will motivate others to make
further tests of the method, resulting in better length control
functions.

It is tempting to use alignment as the measure of grid quality
in the examples given, but this is unfair because the meshes
are, in fact, attempting more than just alignment. Recall that a
length control function was introduced to create small cell
lengths in places where the magnitude of the velocity is large.
[n addition, the weight construction requested that the grid be
orthogonal. The ideal norm for determining whether or not the
grids shown are any good is precisely the value of the functional
I'in Eq. (2)—this measure takes into account both alignment
and length control goals. To use the L* or maximum norms on
just the deviation from alignment changes the criterion by which
the meshes were generated.

Because the functional performs a least-squares fit of the
Jacobian matrix to the weight matrix, it is the user himself who
decides what the ultimate good grid is—it is the grid that
satisfies ' = ¥ everywhere, i.e., the one that makes [ = 0.
If the user selects a different weight matrix, then he is, in effect,
saying that the best grid is now something different (for better
or worse, the burden is thus put entirely upon the user). Of
course, in realistic applications one will rarely attain f = 0 so
the target *‘good’” grid (as defined by the user) is rarely attained.
Since the grid generated always minimizes the functional {, the
grid is a best-fit to the ultimaie *‘good’” grid as defined by the
user—that is the strength of the variational method.

The examples based on the SECO fiow-field show only mod-
est improvement in alignment compared to what one achieves
with transfinite or Laplace grids. This is because it has not been
possible to match the Jacobian to the weight & which was
specified. The main culprit appears to be the boundary data.
As noted at the end of Section 2.1, $7' = & is a solution to
the Euler—Lagrange equations, so one should attain perfect
alignment with this method were there no boundary data to
be satisfied (and were the weight constructed from the gradient
of a vector potential). Unfortunately, the SECO example does
not illustrate this point well. Nevertheless, the examples show
that the VFA grids are better adapted to the flow-field than
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grids constructed by transfinite interpolation or the unweighted
Laplace generator.

No example is given for the case of three dimensions.because
a realistic problem was not readily accessible to this investiga-
tor. Although the case of three dimensions is covered by the
theory presented, it remains to be seen how well it works in
practice. The answer probably depends in part on how much
work the practioner is willing to do in devising the weight and,
in part, on how well the problem lends itself to the overall goal
of alignment of the tangents in the interior with the vector-
fields, given the constraint of the boundary data,

A large number of extensions of this method are possible.
If one has a good base mesh which was constructed in some
other way, the weight & can be computed for that mesh and
weighted with any vector-field one wishes to adapt to (this is
simijlar to the approach used in [10]). One might weight the
matrix & constructed from a vector-field with one derived from
the boundary tangents, so that near the boundary the grid aligns
with the boundary instead of the flow-field. Another intriguing
line of investigation is to determine whether or not it is possible
to automatically adjust the points on the boundary to maximize
the degree of alignment.

Since the method performs a least-squares fit to the inverse
Jacobian matrix it seems clear that, in principle, the user may
controf any of the standard metric properties of the grid (e.g.,
area, length, orthogonality) by proper construction of the
weight. If a vector-field is not available, one can be constructed
from a reasonable initia! mesh (say from an algebraic genera-
tor). The method is particularly applicable to r-type adaptive
mesh calculations in which time-varying flux fields may dictate
regions of the domain in which mesh refinement and adaptation
is needed.
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